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Abstract 
The International Waterbird Census (IWC) is one of the longest-term and largest scale 
biodiversity monitoring programs of citizen science, providing data to assess waterbird 
population trends in support of several international agreements including the African Eurasian 
migratory Waterbirds Agreement, the Ramsar Convention and the Wadden Sea Flyway 
Initiative along the East Atlantic Flyway. Biodiversity data collected at large spatial and 
temporal scales are particularly relevant to provide policy makers with sound 
recommendations, but they can be challenging to analyze. Several modelling recommendations 
have been done to ensure the robustness of biodiversity models, and failing to address them can 
lead to erroneous conclusions Using modelling experiments on IWC data from five example 
waterbird species from the East Atlantic Flyway (4522 sites, 26 years), we addressed five 
statistical challenges potentially affecting the estimation of waterbird population trend: 1) 
zeroinflation, 2) sampling design, 3) detection bias, 4) imputation method and 5) spatial 
autocorrelation. We discuss these challenges and provide recommendations for future IWC data 
management and analyses in order to accommodate or mitigate these challenges. 
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1. Introduction 
 
Long-term biodiversity monitoring schemes are often more useful for answering important 
ecological or conservation questions than short-term ones (Magurran et al. 2010, White 2019). 
They are also generally more useful to support management decision-making and inform policy 
than short-term ones (Hughes et al. 2017). One of the longest-term, widest and most 
internationally widespread biodiversity monitoring scheme is the International Waterbird 
Census (IWC) (Stroud et al. 2022). The IWC is coordinated on a global scale by Wetlands 
International (www.wetlands.org). The IWC was launched in 1967 and covers today over 25 
000 sites in more than 100 countries, making it one of the largest global monitoring schemes 
based largely on citizen science (Sayoud et al. 2017, Amano et al. 2018). Because it is a long-
term global dataset, the IWC has permitted sound scientific inference on several significant 
advances in ecology and conservation (e.g. Green & Elmberg 2014, Amano et al. 2018, Gaget 
et al. 2018). In particular, the IWC is of particular importance and relevance in informing 
international agreements and treaties and supporting their policy decisions. It is for instance 
central in supporting policy of the EU Birds Directive (2009/147/EC), the Ramsar Convention 
on Wetlands, the Convention on the Conservation of Migratory Species of Wild Animals and 
especially the African-Eurasian migratory Waterbirds Agreement (AEWA Secretariat, 2013). 
 
The 2010 Joint Declaration on the protection of the Wadden Sea is another international 
agreement supported by the IWC in the framework of the Wadden Sea Flyway Initiative 
(WSFI). The aim of the WSFI is to strengthen cooperation on conservation, management and 
research activities between the three Wadden Sea states and other countries along the East 
Atlantic Flyway (EAF) which play a significant role in conserving migratory waterbirds along 
this flyway (https://flyway.waddensea-worldheritage.org/). With a low minimum 20 million 
waterbirds belonging to 250 different species sampled over 115 sites (van Roomen et al. 2020), 
the EAF is of major importance for waterbirds at the global scale. By benefiting from the long-
term support of the Trilateral Wadden Sea Cooperation, bird and wetland scientists and 
conservationists in the 31 EAF countries can infer sounder recommendations using such large 
spatio-temporal dataset (van Roomen et al. 2022). 
 
Among the quantitative outputs inferred from the EAF dataset, one statistic is of particular 
interest conservation-wise: population trend of the targeted waterbird species. Methods for 
statistical estimation of both these parameters is still an area in progress (Buckland & Johnston 
2017, Nagy et al. 2022), especially as large-scale schemes based on citizen-science may suffer 
from some additional statistical bias and challenges compared to more standardized biodiversity 
schemes run by e.g. professionals (Kosmala et al. 2016, Johnston et al. 2021). Zero-inflation 
(Zipkin et al. 2014), sampling design (Aubry et al. 2023), detection bias (Kéry et al. 2009), 
choice of imputation approach (Dakki et al. 2021) and spatial bias (Rocchini et al. 2023) are 
among the statistical issues affecting the estimation or modelling of wildlife population trend 
that still present potential for progress. 
 
By modelling and simulating monitoring data of five waterbird species at the EAF scale, we 
evaluate here some impacts of these different statistical issues on population trend estimations 
and make suggestions for potential analytical improvement for the future of the EAF waterbird 
monitoring and possibly the whole IWC. 
 
 
 
 



 - 3 - 

2. Methods 
 
2.1 International Waterbird Census data 
We used waterbird count data from five unnamed waterbird species from the EAF as examples 
and modelled their time-series from 1995 to 2020 (Table 1, Figure 1). We choose to keep 
species identity undisclosed in order to focus on statistical challenges rather than ecological 
inferences although we acknowledge that integrating population ecology into any population 
dynamics modelling is central in any proper conservation biology. IWC ideally takes place in 
mid-January every year. Each observers team, composed by skilled ornithologists, apply the 
field protocol for waterbird counting recommended by Wetlands International (2010). The 
count data were obtained by scanning multi-species flocks of waterbirds with telescopes or 
binoculars as appropriate and counting individuals of each species, or by estimating species-
specific abundance using ‘blocks’ of known size in the appropriate order of magnitude. 
Counting sites of the EAF are distributed from Northern Scandinavia to South Africa all along 
the East Atlantic part of Europe and Africa (Figure 2) but not all are counted every January, 
resulting in a non-negligible number of missing site-year entries (NAs). In order to minimize 
such missing data, we first discarded count data before 1995 (when not all sites had been 
identified within the EAF database) and after 2020 (when not all surveys have been validated 
and integrated into the EAF database). We also filtered out sites with less than 15 surveys within 
time-series in order to decrease missing data to a reasonable ratio (less than 25% percent, Table 
1). 
 

Species 
code 

number 
of sites 

mean 
count/site 

SE 
count/site 

Q1 
count/site 

Median 
count/site 

Q3 
count/site 

Max 
count/site 

number of 
site.year entries 

Number 
of NAs 

% 
NAs 

A 2165 54.56 2,89 0 0 1 45300 56290 8035 14.3 
B 1340 16.62 0,89 0 0 3 6169 34840 5371 15.4 
C 3445 288.5 6,74 0 0 70 96000 89570 14958 16.7 
D 141 2.636 0,62 0 0 0 1291 3666 860 23.5 
E 4467 352.4 5,51 10 57 220 85576 116142 19611 16.9 

Table 1: description of the count data for the five EAF species 
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Figure 1:  count data distribution for the five waterbird species over linear scale (A) or 
logarithmic scale (B). 
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Figure 2: monitoring sites for the five EAF studied species 
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2.2 time-series modelling 
Time-series data were modelled by using generalized linear mixed effect models (GLMM) to 
estimate time (i.e. year) fixed effect in order to assess time trend as the slope of the effect of 
years on untransformed count data (O’Hara & Kotze 2010). We added a site random effect on 
the GLMM intercept to account for repeated samplings (Bird et al. 2014) and selected an 
appropriate response probability distribution (among Poisson, negative binomial and Tweedie 
error distribution) to accommodate the observed overdispersion. We used this design as the 
“base GLMM” to be compared and refined according to each statistical issue. 
 
2.3 potential statistical challenges 
In addition to overdispersion, sampling design, detection bias, imputation method and spatial 
autocorrelation can potentially impact time trend analysis. For sampling design, detection bias 
and imputation analyses, we plotted and compared the slope estimates of the different models 
compared, through the mean estimate of the year coefficients and its 95% confidence interval 
(as mean ± 1.96 * standard error). 
 
Choice of response distribution 
Poisson distribution is widely used to model wildlife, including bird, count data (e.g. van Strien 
et al. 2004, O’Hara & Kotze 2010). Yet, overdispersion and particularly zero-inflation can 
cause violation of the assumption of Poisson distribution (E(Y)=Var(Y)=λ, where Y is the 
observed count and λ the mean or expected count). Since our data seemed heavily zero-inflated 
(Table 1 and Figure 1), we compared zero-inflation under Poisson, negative binomial and 
Tweedie distributions using the “testZeroInflation” function in package DHARMa (Hartig 
2022) to decide on a most appropriate distribution. The response distribution with the lowest 
zero-inflation was selected for each species as the distribution form to be used in the “base 
GLMM” and all refined GLMMs. 
 
Sampling design 
Population declines are best identified when species abundance values are high (Ficetola et al. 
2018). We ran a GLMM on subsamples of each species-specific count dataset defined according 
to mean site-specific abundance in order to investigate which subsample would be most 
important to identify potential time-trend. Locating where would, in each full species-specific 
sample, most time-trend information be located could in turn potentially contribute to design a 
more cost-effective sampling scheme if need be. We therefore compared time-trends for each 
species, i.e. slope of the base full sample GLMM to GLMM based on the three subsamples 
respectively lacking the 10%, 20%, 50% sites with the smaller mean counts and a subsample 
lacking the 10% sites with the larger mean counts. 
 
Detection bias 
Imperfect detection has been a major wildlife monitoring issue since the 90s (Nichols et al. 
2000), with explicit impacts on both inference of population metrics (Kellner & Swihart 2014) 
and costs of policy decisions (Moore & Kendall 2004) but seems to remain difficult to 
accommodate in large-scale long-term monitoring schemes (Sanz-Pérez et al. 2020) despite 
existing solutions like the double sampling approach proposed by Pollock et al. (2002). In order 
to explore impacts of detection bias on population trend estimation, we simulated an “unbiased” 
monitoring output by (i) randomly affecting one to five undetected individuals (with a discrete 
uniform probability of corrected count size) to 30% of the zero counts (ii) adding to all non-
zero counts an ad-hoc uniformly distributed waterbird bonus randomly selected between 0% 
and 10% of the log-transformed count. For the sake of mere exemplification, we assumed a 
moderate rate of false-zero (30%), a systematic negative bias of count data due to imperfect 
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detection and a positive effect of count size on counting error, larger clusters being more 
difficult to enumerate than smaller ones. We do not argue that the simulated detection correction 
we implemented is accurate, but we designed it to be reasonably limited with only 30% of false 
absence and an upper limit of count underestimation set at approximately 50% in the range of 
count values observed for our five species. Such detection bias is well within the range observed 
by e.g. Tyre et al. (2003) and Kellner & Swihart (2014). Correcting for negative bias in 
detection would obviously produce higher and likely very different abundance estimates hence 
flyway population estimates. Yet, we aimed at investigating whether such bias correction would 
also modify trend estimation. We then compared population trend estimations for each species, 
i.e. slope of the base GLMM on uncorrected count to range of slopes estimated from ten 
simulated GLMMs corrected for detection by randomly drawn unbiased counts. 
 
Choice of imputation method 
Within the whole EAF, there are several subregions where data collection is too costly or 
logistically difficult to be completed every year, which results in missing entries in the WI 
database. A substantial amount of missing data jeopardizes sound inference of population trends 
by unbalancing sampling in time and space (Nakagawa & Freckleton 2008, Łopucki et al. 
2022), especially in areas where biodiversity is in stronger need of monitoring (Stephenson et 
al. 2017). Missing data in biodiversity monitoring is generally dealt with by case removal or 
missing value imputation, including through model-based imputation of spatio-temporal count 
data (Onkelinx et al. 2017). The TRIM (TRends and Indices for Monitoring data) model is the 
most widely used example of such methods, particularly for waterbirds (Lehikoinen et al., 2013; 
Van Strien et al., 2004). Recently an alternative model based on penalized Poisson 
parametrization (LORI as Low-Rank Interactions) was proposed by Dakki et al. (2021) to 
impute and analyze incomplete monitoring data and allowing integration of a large number of 
covariates, a feature not implemented in TRIM. Concerning the TRIM method, only factor 
covariates are allowed (with a limited number of levels) and we therefore used the location of 
the site in one of these four large geographical regions: Northern Europe, Southern Europe, 
North Africa and sub-Saharan Africa. Concerning the LORI method, only numerical covariates 
are allowed, and we therefore used the two covariates: the longitude and latitude of the site. In 
the same logic than for detection bias correction, imputing missing data would potentially also 
produce different abundance estimates hence flyway population estimates. Yet, we primarily 
aimed at investigating whether imputation method would also modify trend estimation. We then 
compared time-trends for each species, i.e. slope of the base GLMM over non-imputed data to 
slopes estimated over datasets imputed by either TRIM (using the rtrim package, Bogaart et al. 
2016) and LORI (using the lori package, Robin et al. 2019) under the same GLMM design as 
the base GLMM with non-imputed data.  
 
Spatial autocorrelation 
Spatial autocorrelation (SA) is a pattern frequently found in species distribution data, i.e. 
locations close to each other exhibit more similar or dissimilar values than would be predicted 
by chance alone (Dormann et al. 2007). Waterbird count data could therefore display some SA 
when occurrence or abundance in neighbouring sites are negatively or, more often, positively 
correlated because of habitat or waterbird gregariousness or ecology. SA is a serious statistical 
issue in ecological models as it generally violates their assumption of independence of 
individuals and can artificially result in small confidence intervals on estimated parameters 
(Legendre 1993, Dale & Fortin 2002). We tested in several models, different spatial structures 
to accommodate and mitigate SA. Moran’s I (Rangel et al. 2010) was assessed for each model 
thanks to the function testSpatialAutocorrelation() from the package DHARMa. Tested spatial 
structures were:  
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- Random intercept (RI): building on the methodology presented by Folliot et al. (2022), 
we grouped the sites using a 100x100km grid cells and added the cell identity 
corresponding to each site as random effect on the intercept. The spatial structure is then 
included as a hierarchical level to account for correlation among cells. 

- Gaussian random field (GRF): we used the Stochastic Partial Differential Equations 
(SPDE) to approximate the gaussian random field, as introduced by Lindgren et al. 
(2011). The spatial mesh matrix needed to apply the SPDE approach was created from 
site coordinates using the package sdmTMB (Anderson et al. 2022). To explore the 
effect of the mesh parameters on SA mitigation, we used meshes, either unconstrained 
or constrained by the coastline as physical barrier. In addition, we tested the effect of 
minimal distance between mesh vertices, using cutoff distance of 0.05, 0.1, 0.15, and 
0.5 decimal degree. As a result, we tested the effect of the gaussian random field in 10 
models per species.  

- Basis penalty smoothing (BPS): we used the package ‘mgcv’ (Wood 2011) to fit a 
GAMM with a two-dimensional smoothing function on site coordinates to model 
surface trends (Dormann et al. 2007).  

 
3. Results 
 
3.1 Choice of response distribution 
The Poisson distribution was the least efficient in accommodating response zero-inflation 
whereas the Tweedie distribution was consistently accommodating the most zero-inflation 
across all five studied EAF waterbirds (Figure 3). We therefore fitted all subsequent models 
with Tweedie response distribution. 
 

 
Figure 3: Zero-inflation test value and significance for three response distribution families and 
the five studied species. 
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3.2 Sampling design 
GLMMs discarding the 10% sites with larger mean counts had the most different slope overall 
except for species E which showed a different pattern in time trends of subsamples (Figure 4). 
Slopes of GLMMs discarding sites with smaller mean counts were generally similar among 
each other, again with the exception of species E. Distribution of count data for species E was 
different from the data distribution of the other four species (Table 1) with a larger mean 
count/site overall and particularly in the smaller counts (both Q1 count/site and median 
count/site non-null), thus increasing influence of the sites with smaller counts on the overall 
time slope. For the other four species, sites with larger counts had the most influence on the 
slope.  
 
 

 
Figure 4: slope estimated (and 95% CI) from GLMM for the five studied species, using the full 
dataset (black), the dataset excluding 10%, 20% and 50% sites with smaller counts (green; dark, 
medium, pale) and excluding the 10% sites with larger counts (orange). 
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3.3 Detection bias 
Slopes estimates differed to a large extent between the basic GLMM and the GLMMs using 
data arbitrarily corrected for detection probability (Figure 5).  
 
 

 
Figure 5: Slope estimates for year effect resulting from the detection bias Models. Red dots 
present the slopes estimates for the uncorrected data and boxplots present slope estimates for 
the ten simulated datasets corrected for detection by randomly drawn unbiased counts. 
 
3.4 Imputation method 
Slope estimates for time effect in the basic initial GLMM, the TRIM-imputed GLMM and the 
LORI-imputed GLMM all largely differed (Figure 6), illustrating the potential impact of the 
choice of imputation method on trend estimation. There was no consistent pattern in differences 
among slopes, the LORI GLMM producing more precise estimates, closer to those estimated 
from the initial non-imputed GLMM. 
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Figure 6: Slope estimates (and 95% CI) of year effect (time-trend) for the five studied species 
for non-imputed data GLMM (black), the TRIM-imputed GLMM (red) and the LORI-imputed 
GLMM (blue). 
 
3.5 Spatial autocorrelation 
Spatial autocorrelation was found positive and limited (0> Moran’s I<0.1) yet always 
significant in residuals of the five EAF count data GLMMs (Figure 7). Autocorrelation was 
relatively variable among spatial models and among species, with most modelling options 
remaining unable to remove autocorrelation in the absence of spatial predictors other than 
geographical coordinates. Only in two species could autocorrelation be removed, either with a 
relatively small-sized mesh resolution (species C) or with any spatial modelling option (species 
D). Indeed, in general, integrating spatial components into models of counts contributed to 
decrease the regime of autocorrelation, with BPS performing relatively less well than RI. 
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Figure 7: Moran’s I value and test significance for four main model families (including 10 
INLA models with two different mesh constraints and five parameterization each) for the five 
studied species. Random intercept (RI), Gaussian random field (GRF), Basis penalty smoothing 
(BPS). 
 
4. Discussion 
 
By analyzing IWC data from five random species from the EAF, we wished to illustrate that 
trend estimation based on IWC count data is not trivial and required advanced methodological 
approaches, with still potential for improvement. Investigating five species also shows that 
analytical requirements can and should differ between species. Because we randomly studied 
unknown species, we believe that trend estimation for any IWC waterbird species may thus 
require species-specific analytical requirements. A first recommendation of the present work 
would be to consider the statistical challenges addressed here when estimating population 
trends of all waterbird species. Depending on their zero-inflation, count data distribution and 
spatial autocorrelation, IWC count data may require different analytical scheme or modelling 
specifications between species. 
  
We focused this work on time trend estimation, although population size estimation is equally 
important conservation-wise.  Studying population size would require more in-depth 
knowledge regarding detection bias, which we do not have since it depends on the species 
studied. Having chosen to study unknown species, the study of trends appears more relevant. 
However, these statistical challenges also appear when studying the size of populations; our 
results shed light on and largely apply to the similar challenges of population size estimation. 
Other statistical challenges concerning the study of IWC data could also ultimately be studied 
with the aim of highlighting their impacts and proposing solutions, like e.g. relevance of 
generalized linear vs additive models (Atkinson et al. 2006), but we argue that we illustrated 
here some of the most impacting ones. 
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4.1 zero-inflation: we recommend focusing on the choice of distribution for count modelling 
Although being widely used in wildlife count models, the Poisson distribution was the least 
efficient in accommodating response zero-inflation whereas the Tweedie distribution was 
consistently accommodating the most zero-inflation across all five studied EAF waterbirds 
(Figure 3) with the negative binomial distribution coming close. In order to avoid additional 
modelling assumptions, we did not investigate hurdle approaches, i.e. two-stage modelling for 
presence-absence and abundance conditional on presence. Hurdle models could be further 
explored to model IWC count data.  The Tweedie distribution is relatively widespread and 
simple in use (Miller et al. 2013) and supported in several R packages. Zero-inflation in count, 
i.e. observed, data is a regular, if not frequent, pattern in wildlife science and conservation 
(Dénes et al. 2015). In line with Tirozzi et al. (2022), we recommend a more careful choice 
among response distributions when modelling EAF count data. As recommended by Miller et 
al. (2013), we suggest that Tweedie can often be a solution instead of the more restrictive 
Poisson distribution when more complex two-stages approaches (hierarchical modelling of 
occurrence then abundance) is to be avoided for the sake of simplicity. 
  
4.2 Sampling design: we recommend investing extra effort in sampling sites with larger counts 
For four of the five studied species, sites with larger counts had the most influence on the slope 
estimate. Consequently, depending on the species, most of the needed information on trend 
might lie in the sites with larger mean counts. This rather intuitive result can relate to a basic 
macro-ecological rule predicting that higher local abundances are located on larger habitat 
patches or larger sites (Suet et al. 2021). Yet, comprehensive waterbird censuses are more 
difficult or limited in larger wetlands, which are often partly, or even largely invisible and/or 
inaccessible. A recommendation for EAF sampling design would be to increase sampling 
efforts on large wetlands relative to smaller wetlands (Sayoud et al. 2017); in particular, Africa 
has a number of huge wetlands, including the Merja Zerga in Morocco, the Banc d’Arguin in 
Mauritania, the Senegal Delta in both Mauritania and Senegal or the Bijagos archipelago in 
Guinea Bissau. Because sites with larger counts could be the most important in driving trends, 
we recommend that these few larger sites be given priority for correction of detection bias, 
count error estimation and power analysis of census effort in the framework of a locally agreed 
sampling design. Indeed, we question approaches aiming at obtaining total count for such larges 
sites versus approaches favouring sampling (Le Moullec et al. 2017). Finally, we also 
recommend checking or possibly conduct (by e.g. remote-sensing, Suet et al. 2021) wetland 
inventories in order to include in priority wetlands of larger surface area. 
  
4.3 detection bias: we recommend investigating options for a double-sampling design 
We encompassed both under-detection of presence and underestimation of abundance in this 
general detection issue. Each topic could deserve a discussion per se. Both kind of detection 
bias are obvious barriers to proper population size (Williams et al. 2002, Kellner & Swihart 
2014) and trend (Kéry et al. 2009) estimations. However, as shown here, any mathematical link 
between true abundance and count other than mere proportionality (like, e.g. increased counting 
error in larger bird clusters) may also increase bias in trend estimation. A number of methods 
have been developed to mitigate or estimate detection bias (Williams et al. 2002, Dénes et al. 
2015), and one possibility for large scale surveys such as the EAF monitoring scheme seems to 
be the double sampling approach (Pollock et al. 2002, Bart et al. 2004). Double sampling is 
currently applied in several waterbird schemes in America (e.g. Jiménez et al. 2023) and large-
scale citizen science project (Johnston et al. 2018). In short, such an approach integrates a 
correction of counts from a random subsample of sites within the large-scale standard 
uncorrected monitoring scheme. Correction of counts can be designed through e.g. replicates 
of counts among observers (Bird et al. 2014) or short time-intervals. Correction of counts can 
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also be improved by incorporating observation covariates like counted surface area, number of 
observers, count duration, expertise of observers (Johnston et al. 2018). 
  
4.4 Choice of imputation method: we recommend investing in statistical research and software 
programming 
Temporal slope estimates differed markedly between TRIM and LORI imputation models. It 
should be noted that the LORI imputation method used in this work is particularly designed and 
therefore adapted to integrate a large number of environmental covariates to predict waterbird 
counts (Dakki et al. 2021). Thus, adding only geographical coordinates as covariates like we 
did in this study, is not very informative.  LORI method would probably be much more relevant 
if we would have included environmental variables documenting (e.g. habitats, fragmentation 
etc.) and years (climatic covariates of breeding success and winter movements). We argue that 
this capacity to integrate as many covariates as needed is an asset by comparison to other 
imputation packages, However, both TRIM and LORI only model Poisson-distributed count 
data and are therefore less suited to model more overdispersed data with zero-inflation like IWC 
count data. A more overdispersed model like the Poisson-lognormal is currently being 
investigated to improve imputation performance over LORI’s (Chiquet et al. 2021). Overall, 
we believe integrating large numbers of predictors into large-scale datasets like the EAF 
monitoring scheme as well as building more flexible modelling frameworks than the imputation 
models currently available is a robust approach for imputing IWC data (Dakki et al. 2021). 
Further developments are needed to improve imputation performances dedicated to EAF or 
more generally IWC data. Finally, depending on whether the EAF and, more generally, the 
IWC monitoring schemes, require imputation performance vs ecological inference, an option 
may be to use machine learning (Fink et al. 2023). We argue this debate is beyond the scope of 
the present work, but we may stick on the ecological inference side for now because our 
ultimate goal being conservation or sustainable management, we may need to permanently 
understand the complex interactions between birds and their environment.  
  
4.5 Spatial autocorrelation: we recommend including a spatial structuration in the modelling 
framework  
Waterbird count distribution across EAF wetlands showed little (0 > Moran’s I < 0.1) but 
significant spatial autocorrelation in model residuals for all five species. The Gaussian random 
field was often the most efficient way to reduce the spatial autocorrelation in the model 
residuals, independently from the mesh resolution or constrain. Integration of GRF in R 
packages is rapidly increasing, facilitating its use (cf mgcv and sdmTMB; Wood 2011, 
Anderson et al. 2022). Alternatively, both basis penalty smoothing and random intercept 
resulted in decent effects on spatial autocorrelation and could be used more extensively (Folliot 
et al. 2022). However, if all the tested models could mitigate spatial autocorrelation, only two 
of them totally controlled for it. It is noteworthy that none of the spatial models used in this 
work integrated environmental predictors besides latitude, longitude and year. However, one 
major issue in reducing spatial autocorrelation is to collect and integrate relevant environmental 
predictors and covariates into population models (Dormann et al. 2007). We believe that a next 
step to this work would be include environmental predictors that can explain spatial 
dependencies (Zuur and Ieno 2021).  
As environmental predictors and covariates become increasingly available, they can be used to 
improve analyses of large waterbird count datasets like the EAF monitoring scheme by 
contributing simultaneously to inform: 

- autocorrelation models, 
- imputation models 
- detectability models 
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Collecting and securing large datasets of environmental predictors and covariates, including 
sampling effort covariates, stands thus as a major priority for the EAF monitoring scheme. 
  

1.6 further challenges and improvements 
Uncertainty estimation and propagation is one of the most challenging issues not addressed in 
our study. Uncertainty can result from methodologic (epistemic) and natural (aleatoric) 
processes. Uncertainty occurs at multi scale and should be propagated to avoid overconfidence 
in population trend estimation. Both kinds of uncertainty can be propagated using the same 
method of Monte Carlo (Soize 2017, Zhang 2021) which we recommend introducing in 
analyses of the EAF monitoring scheme, as proper estimation of uncertainty is crucial for sound 
policy decision making. 
  
Finally, the growth, maintenance, optimization and quality control of the EAF database and 
more generally the IWC database is probably the most important recommendation we want to 
highlight. Citizen science databases are now becoming more and more numerous and rich but 
also possible subject to more errors, biases and lack of precision than standard professional or 
expert databases (Bird et al. 2014). We argue that daily quality control of incoming data must 
be implemented to the highest standards in terms of expert staff and automation if the EAF 
monitoring scheme is to be cost-effective in the long term. Overall, this work must be seen as 
a plea for maintaining and strengthening the IWC. The general methodological 
recommendations we make here are only aiming at improving the IWC and their value for 
decision making. The rich data already collected by thousands of observers contain a wealth of 
information to be used for the conservation of birds and wetlands. 
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